Email updates

Keep up to date with the latest news and content from Flavour and BioMed Central.

Open Access Opinion

Network analysis and data mining in food science: the emergence of computational gastronomy

Sebastian E Ahnert

Author Affiliations

Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK

Flavour 2013, 2:4  doi:10.1186/2044-7248-2-4

Published: 9 January 2013

Abstract

The rapidly growing body of publicly available data on food chemistry and food usage can be analysed using data mining and network analysis methods. Here we discuss how these approaches can yield new insights both into the sensory perception of food and the anthropology of culinary practice. We also show that this development is part of a larger trend. Over the past two decades large-scale data analysis has revolutionized the biological sciences, which have experienced an explosion of experimental data as a result of the advent of high-throughput technology. Large datasets are also changing research methodologies in the social sciences due to the data generated by mobile communication technology and online social networks. Even the arts and humanities are seeing the establishment of ‘digital humanities’ research centres in order to cope with the increasing digitization of literary and historical sources. We argue that food science is likely to be one of the next beneficiaries of large-scale data analysis, perhaps resulting in fields such as ‘computational gastronomy’.

Keywords:
Networks; Data mining; Sensory science; Computational gastronomy; Flavour compounds